Head office:
Farmview Supermarket, (Level -5), Farmgate, Dhaka-1215
Corporate office:
18, Indira Road, Farmgate, Dhaka-1215
Branch Office:
109, Orchid Plaza-2, Green Road, Dhaka-1215
Kostenlos DSA-C03 dumps torrent & Snowflake DSA-C03 Prüfung prep & DSA-C03 examcollection braindumps
Wenn Sie IT-Angestellter sind, wollen Sie befördert werden? Wollen Sie ein IT-Technikexpert werden? Dann legen Sie doch die Snowflake DSA-C03 Zertifizierungsprüfung ab! Sie wissen auch, wie wichtig diese Zertifizierung Ihnen ist. Sie sollen sich keine Sorgen darüber machen, die Prüfung zu bestehen. Sie soll auch an Ihrer Fähigkeit zweifeln. Wenn Sie sich an der Snowflake DSA-C03 Zertifizierungsprüfung beteiligen, wenden Sie sich It-Pruefung an. Er ist eine professionelle Schulungswebsite. Mit ihm können alle schwierigen Fragen lösen. Die Schulungsunterlagen zur Snowflake DSA-C03 Zertifizierungsprüfung von It-Pruefung können Ihnen helfen, die Snowflake DSA-C03 Prüfung einfach zu bestehen. Er hat unzähligen Kandidaten geholfen. Wir garantieren Ihnen 100% Erfolg. Klicken Sie den It-Pruefung und Sie können Ihren Traum verwirklichen.
Wenn Sie unsere Lernmaterialien zur Snowflake DSA-C03 Zertifizierungsprüfung benutzen wollen, werden sicher die Zeit und Wirtschaftskosten reduziert. Vorm Kauf unserer Snowflake DSA-C03 Prüfungsfrage können Sie kostenlos unsere Fragen herunterladen. Sie sind in der Form von PDF und Software. Wenn Sie die Softwareversion brauchen, bitte setzen Sie sich inVerbindung mit unserem Kundenservice.
DSA-C03 Praxisprüfung & DSA-C03 Echte Fragen
Sorgen Sie noch um die Prüfungsunterlagen der Snowflake DSA-C03? Jetzt brauchen Sie keine Sorgen! Weil uns zu finden bedeutet, dass Sie schon die Schlüssel zur Prüfungszertifizierung der Snowflake DSA-C03 gefunden haben. Wir It-Pruefung beschäftigen uns seit Jahren mit der Entwicklung der Software der IT-Zertifizierungsprüfung. Jetzt genießen wir einen guten Ruf weltweit. Wir bieten Ihnen die effektivsten Hilfe bei der Vorbereitung der Snowflake DSA-C03.
Snowflake SnowPro Advanced: Data Scientist Certification Exam DSA-C03 Prüfungsfragen mit Lösungen (Q224-Q229):
224. Frage
You're working with a large dataset containing customer purchase history. You want to identify customers whose purchase frequency deviates significantly from the average purchase frequency of all customers. The dataset is in a table named 'purchase history' with columns 'customer id' and 'purchase date'. What combination of Snowflake functionalities will allow you to achieve this task efficiently?
Choose all that apply.
Antwort: A,B
Begründung:
Options C and D are the correct approaches. Option C, using the 'QUALIFY clause with window functions, is ideal for filtering rows based on a window function result. You can calculate the purchase frequency using a window function and compare it to the average within the 'QUALIFY' clause, effectively identifying those with significant deviations. Option D offers a robust statistical approach. Calculating the Z-score, which measures how many standard deviations an element is from the mean, allows you to identify customers with purchase frequencies that are statistically significantly different from the average. Filtering based on a Z-score threshold (e.g., IZI > 2) identifies outliers. Although A and B are steps that could be useful, they are not complete solutions on their own. Option E, while technically possible, would be less efficient than using built-in functions and windowing.
225. Frage
You are building a machine learning model to predict loan defaults. You have a dataset in Snowflake with the following features: 'income' (annual income in USD), 'loan_amount' (loan amount in USD), and 'credit_score' (FICO score). You need to normalize these features before training your model. The data has outliers in both 'income' and 'loan_amount', and 'credit_score' has a roughly normal distribution but you still want to standardize it to have a mean of 0 and standard deviation of 1. You want to perform these normalizations using only SQL in Snowflake (no UDFs). Which of the following SQL transformations are most suitable?
Antwort: A
Begründung:
Option C is the most suitable. Robust Scaling is appropriate for 'income' and 'loan_amount' due to the presence of outliers. Robust scaling, using IQR is less sensitive to extreme values than Min-Max or Z-score. Z-score standardization is suitable for 'credit_score' as it has a roughly normal distribution, and standardization is desired. Option A is incorrect since Min-Max scaling is highly sensitive to outliers. Option B is incorrect because Z-score is not outlier resilient and it doesn't take into account the data properties given for credit score. Log transformation and arcsinh transform can handle outliers, they're not as resilient as robust scaling. The arcsinh transformation is also useful for features that may have negative values, but we don't have that information here.
226. Frage
You're building a customer segmentation model and need to aggregate data from various tables. You have the following tables in Snowflake: 'customer demographics' (customer id, age, city, income) 'customer transactionS (transaction_id, customer id, transaction_date, amount) 'product_details' (product_id, category) 'transaction_products' (transaction_id, product_id) Your goal is to create a single Snowpark DataFrame containing customer demographics along with the total amount spent by each customer on products within the 'Electronics' category in the last year. However, ensure that only customers with income greater than 50000 are considered and handle cases where customers have no transaction records, assigning a value of 0 to the 'total_electronics_spending' column for those customers. How can we achieve this using snowpark? Choose the correct options
Antwort: C,D,E
Begründung:
Option B, C and D are correct. Option B is correct because using LEFT JOINs starting with 'customer_demographics' (after filtering for income) ensures all eligible customers are included. 'coalesce' is crucial for handling customers with no transactions, assigning a 0 value. Option C is also correct as using a temporary view is a valid solution to have electronics expenditure for each customer. Option D is correct as pushing down all operations to SQL within Snowpark can be highly performant, as it allows Snowflake to optimize the query execution. However, query readability and maintainability should also be considered. Option A is incorrect because it states that INNER JOINs should be used, but inner joins would exclude customers with no transaction data which is opposite to what is stated in the question. Option E is incorrect as UDFs can introduce performance overhead compared to native Snowpark DataFrame operations or direct SQL queries, especially for large datasets. Avoid UDF when the same output can be achieved without it.
227. Frage
You are deploying a fraud detection model using Snowpark Container Services. The model requires a substantial amount of GPU memory. After deploying your service, you notice that it frequently crashes due to Out-Of-Memory (OOM) errors. You have verified that the container image itself is not the source of the problem. Which of the following strategies are most appropriate to mitigate these OOM errors when using Snowpark Container Services, assuming you want to minimize costs and complexity?
Antwort: A,B
Begründung:
Options A and D are the best strategies. Option A directly addresses the OOM issue by increasing the memory allocation. Monitoring memory usage is crucial to optimize resource utilization. Option D focuses on efficient memory management within the model itself. Explicitly freeing memory and garbage collection can reduce memory footprint. If model need very less gpu memory then decrease container.resources.memory' configuration Option B is a valid strategy, but it introduces significantly more complexity with model parallelism and inter-container communication. Option C might be an option if GPU inference is not strictly necessary and acceptable performance can be achieved with CPU inference, but it is a significant change to the model architecture and potentially impacts performance. Option E is incorrect because ignoring OOM errors leads to unreliable service behavior and data loss.
228. Frage
A marketing team at 'RetailSphere' wants to segment their customer base using unstructured textual data (customer reviews) stored in a Snowflake VARIANT column named 'REVIEW TEXT within the table 'CUSTOMER REVIEWS'. They aim to identify distinct customer segments based on sentiment and topics discussed in their reviews. They want to use a Supervised Learning approach for this task. Which of the following strategies best describes the appropriate approach within Snowflake, considering performance and scalability? Assume you have pre-trained sentiment and topic models deployed as Snowflake external functions.
Antwort: C
Begründung:
Option C provides the most robust and scalable approach. Using Snowflake external functions allows leveraging pre-trained models without moving the data out of Snowflake. Applying sentiment analysis and topic modeling generates features that can be used by a supervised classification model trained on a labeled subset of reviews. This combines the power of external models with Snowflake's data processing capabilities. Using labeled data allows for better segment definition using Supervised approach.
229. Frage
......
Die Fragenpool zur Snowflake DSA-C03 Zertifizierungsprüfung von It-Pruefung werden nach dem gleichen Lernplan bearbeitet. Wir aktualisieren auch ständig unsere Fragenpool, die Prüfungsragen und Antworten enthalten. Weil unsere Prüfungen den echten Prüfungen sehr änlich sind, ist unsere Erfolgsquote auch sehr hoch. Diese Tatsache ist nicht zu leugnen, Unsere Fragenpool zur Snowflake DSA-C03 Zertifizierung können den Kandidaten sehr helfen. Und unser Preis ist ganz rational, was jedem IT-Kandidaten passt.
DSA-C03 Praxisprüfung: https://www.it-pruefung.com/DSA-C03.html
Snowflake DSA-C03 Prüfungs-Guide Wenn ja, sind Sie sicherlich ein Mensch mit Ambition, Bevor Sie kaufen, können Sie die Demo von DSA-C03 dumps torrent kostenlos herunterladen, um unsere Produkte kennenzulernen, Es ist doch nicht so schwer, die Snowflake DSA-C03 Zertifizierungsprüfung zu bestehen, Während andere im Internet spielen, können Sie mit Online Test Engine der Snowflake DSA-C03 trainieren.
Sie gelangten auf einen von hohen Mauern umgebenen Hof, auf dem DSA-C03 der morgendliche Regen rauschend niederging, sprach der Hamster, Wenn ja, sind Sie sicherlich ein Mensch mit Ambition.
Bevor Sie kaufen, können Sie die Demo von DSA-C03 Dumps torrent kostenlos herunterladen, um unsere Produkte kennenzulernen, Es ist doch nicht so schwer, die Snowflake DSA-C03 Zertifizierungsprüfung zu bestehen.
Snowflake DSA-C03 Quiz - DSA-C03 Studienanleitung & DSA-C03 Trainingsmaterialien
Während andere im Internet spielen, können Sie mit Online Test Engine der Snowflake DSA-C03 trainieren, Die kostenlose Demo aller drei Versionen können Sie auf unserer Webseite herunterladen und sofort probieren.
Since 1998, Global IT & Language Institute Ltd offers IT courses in Graphics Design, CCNA Networking, IoT, AI, and more, along with languages like Korean, Japanese, Italian, Chinese, and 26 others. Join our vibrant community where passion fuels education and dreams take flight
Head office:
Farmview Supermarket, (Level -5), Farmgate, Dhaka-1215
Corporate office:
18, Indira Road, Farmgate, Dhaka-1215
Branch Office:
109, Orchid Plaza-2, Green Road, Dhaka-1215