Head office:
Farmview Supermarket, (Level -5), Farmgate, Dhaka-1215
Corporate office:
18, Indira Road, Farmgate, Dhaka-1215
Branch Office:
109, Orchid Plaza-2, Green Road, Dhaka-1215
2025 Databricks-Generative-AI-Engineer-Associate Latest Test Simulator 100% Pass | High Pass-Rate Databricks-Generative-AI-Engineer-Associate: Databricks Certified Generative AI Engineer Associate 100% Pass
The Braindumpsqa Databricks-Generative-AI-Engineer-Associate exam questions are checked and verified by experienced and qualified Databricks Certified Generative AI Engineer Associate exam trainers. So you can trust on the validity and top standard of Braindumpsqa Databricks-Generative-AI-Engineer-Associate exam practice test questions. With the Braindumpsqa Databricks-Generative-AI-Engineer-Associate exam questions you will get everything that you need to prepare and pass the challenging Databricks Databricks-Generative-AI-Engineer-Associate Exam with good scores. The Braindumpsqa Databricks-Generative-AI-Engineer-Associate exam questions will give you an idea about the final Databricks-Generative-AI-Engineer-Associate exam format and you will get experience about Databricks-Generative-AI-Engineer-Associate exam format before the final exam.
Databricks Databricks-Generative-AI-Engineer-Associate Exam Syllabus Topics:
Topic
Details
Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
>> Databricks-Generative-AI-Engineer-Associate Latest Test Simulator <<
2025 Databricks Realistic Databricks-Generative-AI-Engineer-Associate Latest Test Simulator Pass Guaranteed Quiz
Stop wasting time on meaningless things. There are a lot wonderful things waiting for you to do. You still have the opportunities to become successful and wealthy. The Databricks-Generative-AI-Engineer-Associate study materials is a kind of intelligent learning assistant, which is capable of aiding you pass the Databricks-Generative-AI-Engineer-Associate Exam easily. If you are preparing the exam, you will save a lot of troubles with the guidance of our Databricks-Generative-AI-Engineer-Associate study materials. Our company is aimed at relieving your pressure from heavy study load. So we strongly advise you to have a try.
Databricks Certified Generative AI Engineer Associate Sample Questions (Q50-Q55):
NEW QUESTION # 50
A Generative Al Engineer is tasked with developing an application that is based on an open source large language model (LLM). They need a foundation LLM with a large context window.
Which model fits this need?
Answer: B
Explanation:
* Problem Context: The engineer needs an open-source LLM with a large context window to develop an application.
* Explanation of Options:
* Option A: DistilBERT: While an efficient and smaller version of BERT, DistilBERT does not provide a particularly large context window.
* Option B: MPT-30B: This model, while large, is not specified as being particularly notable for its context window capabilities.
* Option C: Llama2-70B: Known for its large model size and extensive capabilities, including a large context window. It is also available as an open-source model, making it ideal for applications requiring extensive contextual understanding.
* Option D: DBRX: This is not a recognized standard model in the context of large language models with extensive context windows.
Thus,Option C(Llama2-70B) is the best fit as it meets the criteria of having a large context window and being available for open-source use, suitable for developing robust language understanding applications.
NEW QUESTION # 51
A Generative AI Engineer is building an LLM to generate article summaries in the form of a type of poem, such as a haiku, given the article content. However, the initial output from the LLM does not match the desired tone or style.
Which approach will NOT improve the LLM's response to achieve the desired response?
Answer: C
Explanation:
The task at hand is to improve the LLM's ability to generate poem-like article summaries with the desired tone and style. Using aneutralizerto normalize the tone and style of the underlying documents (option B) will not help improve the LLM's ability to generate the desired poetic style. Here's why:
* Neutralizing Underlying Documents:A neutralizer aims to reduce or standardize the tone of input data. However, this contradicts the goal, which is to generate text with aspecific tone and style(like haikus). Neutralizing the source documents will strip away the richness of the content, making it harder for the LLM to generate creative, stylistic outputs like poems.
* Why Other Options Improve Results:
* A (Explicit Instructions in the Prompt): Directly instructing the LLM to generate text in a specific tone and style helps align the output with the desired format (e.g., haikus). This is a common and effective technique in prompt engineering.
* C (Few-shot Examples): Providing examples of the desired output format helps the LLM understand the expected tone and structure, making it easier to generate similar outputs.
* D (Fine-tuning the LLM): Fine-tuning the model on a dataset that contains examples of the desired tone and style is a powerful way to improve the model's ability to generate outputs that match the target format.
Therefore, using a neutralizer (option B) isnotan effective method for achieving the goal of generating stylized poetic summaries.
NEW QUESTION # 52
A small and cost-conscious startup in the cancer research field wants to build a RAG application using Foundation Model APIs.
Which strategy would allow the startup to build a good-quality RAG application while being cost-conscious and able to cater to customer needs?
Answer: D
Explanation:
For a small, cost-conscious startup in the cancer research field, choosing a domain-specific and smaller LLM is the most effective strategy. Here's whyBis the best choice:
* Domain-specific performance: A smaller LLM that has been fine-tuned for the domain of cancer research will outperform a general-purpose LLM for specialized queries. This ensures high-quality responses without needing to rely on a large, expensive LLM.
* Cost-efficiency: Smaller models are cheaper to run, both in terms of compute resources and API usage costs. A domain-specific smaller LLM can deliver good quality responses without the need for the extensive computational power required by larger models.
* Focused knowledge: In a specialized field like cancer research, having an LLM tailored to the subject matter provides better relevance and accuracy for queries, while keeping costs low.Large, general- purpose LLMs may provide irrelevant information, leading to inefficiency and higher costs.
This approach allows the startup to balance quality, cost, and customer satisfaction effectively, making it the most suitable strategy.
NEW QUESTION # 53
A Generative Al Engineer has successfully ingested unstructured documents and chunked them by document sections. They would like to store the chunks in a Vector Search index. The current format of the dataframe has two columns: (i) original document file name (ii) an array of text chunks for each document.
What is the most performant way to store this dataframe?
Answer: A
Explanation:
* Problem Context: The engineer needs an efficient way to store chunks of unstructured documents to facilitate easy retrieval and search. The current dataframe consists of document filenames and associated text chunks.
* Explanation of Options:
* Option A: Splitting into train and test sets is more relevant for model training scenarios and not directly applicable to storage for retrieval in a Vector Search index.
* Option B: Flattening the dataframe such that each row contains a single chunk with a unique identifier is the most performant for storage and retrieval. This structure aligns well with how data is indexed and queried in vector search applications, making it easier to retrieve specific chunks efficiently.
* Option C: Creating a unique identifier for each document only does not address the need to access individual chunks efficiently, which is critical in a Vector Search application.
* Option D: Storing each chunk as an independent JSON file creates unnecessary overhead and complexity in managing and querying large volumes of files.
OptionBis the most efficient and practical approach, allowing for streamlined indexing and retrieval processes in a Delta table environment, fitting the requirements of a Vector Search index.
NEW QUESTION # 54
A Generative Al Engineer is creating an LLM system that will retrieve news articles from the year 1918 and related to a user's query and summarize them. The engineer has noticed that the summaries are generated well but often also include an explanation of how the summary was generated, which is undesirable.
Which change could the Generative Al Engineer perform to mitigate this issue?
Answer: B
Explanation:
To mitigate the issue of the LLM including explanations of how summaries are generated in its output, the best approach is to adjust the training or prompt structure. Here's why Option D is effective:
* Few-shot Learning: By providing specific examples of how the desired output should look (i.e., just the summary without explanation), the model learns the preferred format. This few-shot learning approach helps the model understand not only what content to generate but also how to format its responses.
* Prompt Engineering: Adjusting the user prompt to specify the desired output format clearly can guide the LLM to produce summaries without additional explanatory text. Effective prompt design is crucial in controlling the behavior of generative models.
Why Other Options Are Less Suitable:
* A: While technically feasible, splitting the output by newline and truncating could lead to loss of important content or create awkward breaks in the summary.
* B: Tuning chunk sizes or changing embedding models does not directly address the issue of the model's tendency to generate explanations along with summaries.
* C: Revisiting document ingestion logic ensures accurate source data but does not influence how the model formats its output.
By using few-shot examples and refining the prompt, the engineer directly influences the output format, making this approach the most targeted and effective solution.
NEW QUESTION # 55
......
Braindumpsqa has made the Databricks Databricks-Generative-AI-Engineer-Associate exam dumps after consulting with professionals and getting positive feedback from customers. The team of Braindumpsqa has worked hard in making this product a successful Databricks-Generative-AI-Engineer-Associate study material. So we guarantee that you will not face issues anymore in passing the Databricks-Generative-AI-Engineer-Associate Certification test with good grades. Braindumpsqa has built customizable Databricks-Generative-AI-Engineer-Associate practice exams (desktop software & web-based) for our customers.
Databricks-Generative-AI-Engineer-Associate Free Download: https://www.braindumpsqa.com/Databricks-Generative-AI-Engineer-Associate_braindumps.html
Since 1998, Global IT & Language Institute Ltd offers IT courses in Graphics Design, CCNA Networking, IoT, AI, and more, along with languages like Korean, Japanese, Italian, Chinese, and 26 others. Join our vibrant community where passion fuels education and dreams take flight
Head office:
Farmview Supermarket, (Level -5), Farmgate, Dhaka-1215
Corporate office:
18, Indira Road, Farmgate, Dhaka-1215
Branch Office:
109, Orchid Plaza-2, Green Road, Dhaka-1215